Water Discovered on Moon’s Surface Points to Water Within

moon crater
This 70mm handheld camera's view of the moon, photographed during the Apollo 16 mission's lunar orbit, features crater Bullialdus (Photo courtesy NASA)


WASHINGTON, DC, August 28, 2013 (ENS) – For the first time from lunar orbit, scientists have detected “magmatic water,” which originates from deep within the Moon’s interior, on the surface of the Moon, reports the National Atmospheric and Space Administration, NASA.

NASA-funded lunar research has yielded evidence of water locked in mineral grains on the surface of the Moon from an unknown source deep beneath the surface.

The research findings, published August 25 in the journal “Nature Geoscience,” represent the first detection of this form of water from a spacecraft orbiting the Moon. Earlier studies had shown the existence of magmatic water in lunar samples returned during NASA’s Apollo program, which landed men on the Moon in April 1972.

This magmatic water discovery relies on data from NASA’s Moon Mineralogy Mapper, M3, an instrument aboard the Indian Space Research Organization’s Chandrayaan-1 spacecraft.

moon crater
This 70mm handheld camera’s view of the moon, photographed during the Apollo 16 mission’s lunar orbit, features crater Bullialdus, April 1972. (Photo courtesy NASA)

The M3 instrument imaged the lunar impact crater Bullialdus, which lies near the Moon’s equator. NASA says scientists want to study this area because they can better quantify the amount of water inside the rocks based on the crater’s location and the type of rocks it holds.

The central peak of the crater is made up of a type of rock that forms deep within the lunar crust and mantle when magma is trapped underground.

“This rock, which normally resides deep beneath the surface, was excavated from the lunar depths by the impact that formed Bullialdus crater,” said Rachel Klima, a planetary geologist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

“Compared to its surroundings, we found that the central portion of this crater contains a significant amount of hydroxyl – a molecule consisting of one oxygen atom and one hydrogen atom – which is evidence that the rocks in this crater contain water that originated beneath the lunar surface,” Klima said.

In 2009, M3 provided the first mineralogical map of the lunar surface and discovered water molecules in the polar regions of the Moon. This water is thought to be a thin layer formed from solar wind hitting the Moon’s surface.

The Bullialdus crater is in a region with an unfavorable environment for solar wind to produce significant amounts of water on the surface.

“NASA missions like Lunar Prospector and the Lunar Crater Observation and Sensing Satellite and instruments like M3 have gathered crucial data that fundamentally changed our understanding of whether water exists on the surface of the Moon,” said S. Pete Worden, center director at NASA’s Ames Research Center in Moffett Field, California.

“Similarly, we hope that upcoming NASA missions such as the Lunar Atmosphere and Dust Environment Explorer, or LADEE, will change our understanding of the lunar sky,” Worden said.

The detection of internal water from orbit means scientists can begin to test some of the findings from sample studies in a broader context, including in regions far from where the Apollo sites are clustered on the near side of the Moon.

For many years, researchers believed that the rocks from the Moon were bone-dry and any water detected in the Apollo samples had to be contamination from Earth.

“Now that we have detected water that is likely from the interior of the Moon, we can start to compare this water with other characteristics of the lunar surface,” said Klima. “This internal magmatic water also provides clues about the Moon’s volcanic processes and internal composition, which helps us address questions about how the Moon formed, and how magmatic processes changed as it cooled.”

Joshua Cahill and David Lawrence of the Applied Physics Laboratory and Justin Hagerty of the U.S. Geological Survey’s Astrogeology Science Center in Flagstaff, Arizona, co-authored the paper.

NASA’s Lunar Advanced Science and Engineering Program, the NASA Lunar Science Institute at Ames and the NASA Planetary Mission Data Analysis Program supported the research. NLSI is a virtual organization jointly funded by NASA’s Science Mission Directorate and NASA’s Human Exploration and Operations Mission Directorate in Washington, to enable collaborative, interdisciplinary research in support of NASA lunar science programs.

Copyright Environment News Service (ENS) 2013. All rights reserved.

Continue Reading